

Purpose of Meeting

- To update the TAG on the status of Shasta River TMDL development activities.
- To summarize 2002 & 2003 water quality monitoring activities and results.
- To discuss data analysis approach.
- To discuss 2004 water quality monitoring plans.
- To answer questions and receive feedback.

2002 & 2003 Monitoring Activities

- Thermal infrared survey
- Continuous monitoring of temperature, DO, pH, conductance (sondes):
 - 2002: 3 sites
 - 2003: 4 permanent sites; 13 periodic sites
- Continuous temperature monitoring:
 - 2003: 9 sites
- Field measurement of temperature, DO, pH, conductance:
 - 2003: all sonde and most grab sites

2002 & 2003 Monitoring Activities cont.

- Grab sample analysis of nutrients, oxygen demanding constituents, and Chl a:
 - 2002 Baseline monitoring: 3 Shasta River sites
 - Parcel tracking studies: 8 Shasta River sites
 - Background nutrients 4 upper tributary sites and 6 springs
 - Wastewater treatment plant bracketing
 - Irrigation return flows (16 samples)
 - Lake Shastina profile study
- Sediment Oxygen Demand Study
- > Flow measurements

Site ID	Site Location	River	Grab	Sonde	Temperature		
		Mile ¹	Sampling	Location ²	Location ³	Location ⁴	
Shanrmth	Shasta River near Mouth at USGS Gage	0.6	X	Χ			
Shaosrr	Shasta River at Old Shasta River Road	4.0			X		
Shaatyard	Shasta River at Yreka-Ager Road	10.4	X	X	X		
Shaathwy3	Shasta River at Highway 3	12.3	Х	Х		Х	
Shaatmgr	Shasta River at Montague-Grenada Road	14.7	X	Χ		X	
Shaatfrln	Shasta River at Freeman Road	17.9	X	Х	X	***	
Shaata12	Shasta River at Highway A12	21.9	X	Х	X		
Shaatptrs	Shasta River 1.9 Miles Downstream of Big Springs			000			
¥6	Creek	27.9	X	Χ			
Shaathvr	Shasta River at Big Springs Road	33.7	X				
Shaatrysd	Shasta River at Riverside Drive	35.7	X	X	X		
Lake Shastina ([Owinnell Reservoir) is located at river mile 36.4.						
All locations ups	tream of Shastina are determined using an assumed stream length	n along the floor	of Shastina.				
LkshastB	Lake Shastina Station B		X	Х			
LkshastC	Lake Shastina Station C		X	X			
Shaatedgrd	Shasta River at Edgewood Road	42.9	X	X			
Shaatosr	Shasta River at Old Stage Road	47.7	X				
Shannf	North N Fork Shasta River	47.5+0.1	X				
Lshanrmth	Little Shasta River Near Mouth	15.5+0.3	X	X	X		
Lshaatbmr	Little Shasta River at Ball Mountain Road	15.5+10.0	X				
Lshatmd	Little Shasta River at Martin's Dairy Campground	15.5+23.8	X				
Yreatagr	Yreka Creek at Anderson Grade Road	7.6+0.6	X				
Yreatact	Yreka Creek at Cutoff Trench	7.6+2.9	X				
Yreathwy3	Yreka Creek at Highway 3	7.6+3.4	X				
Yreatobrd	Yreka Creek at Oberlin Road	7.6+5.3	X				
Orslus	Oregon Slough Upstream of Montague Wastewater Treatment Ponds	11.2+1.6	х				
Orslds	Oregon Slough Downstream of Montague Wastewater Treatment Ponds	11.2+1.1	X				
Parus	Parks Creek Upper	30.4+17.0	X		X		
Beaatspr	Beaughton Creek Upper	43.7+5.8	X				
Bolds	Boles Creek Downstream of City of Weed Wastewater Treatment Ponds	44.8+1.8	Х		×		
Bolus	Boles Creek Upstream of City of Weed Wastewater Treatment Ponds	44.8+2.3	X				
Bassp	Bassey Spring		X	Х			
Sodsp	Soda Spring		X				
Evasp	Evans Spring		X				
Jimsp	Jim Spring		X				
Hvrsp	Hidden Valley Spring		X	X			
Bigsplk	Big Springs Lake		X	X			
Bigsp	Big Springs Spring		X	X			

³ Temperature Location = Continuous measurement of temperature with Optic StowAway. ⁴ SOD Location = Sediment oxygen demand measurement location.

Temperature Data: Shasta River and Various Springs

D.O. Data Range - Shasta River @ Various Locations (June 2002 & 2003)

Collected by USGS

Shasta River D.O. Data Range - June 2003 Collected by NCRWQCB & USGS

D.O. Data Range - Shasta River @ Various Locations (July 2002 & 2003)

Collected by USGS

Shasta River D.O. Data Range - July 2003 Collected by NCRWQCB

D.O. Data Range - Shasta River @ Various Locations (August 2002 & 2003)

Collected by USGS

Shasta River D.O. Data Range - August 2003 Collected by NCRWQCB & USGS

D.O. Data Range - Shasta River @ Various Locations (September 2002 & 2003)

Shasta River D.O. Data Range - October 2003 Collected by NCRWQCB

Dissolved Oxygen Data @ Various Springs - (2003) Collected by NCRWQCB

Continuous Dissolved Oxygen Data - Lake Shastina (09/10/2003) Collected by NCRWQCB

Continuous Dissolved Oxygen Data - Lake Shastina (09/10/2003) Collected by NCRWQCB

O-PO4 Grab Sample Data @ Various Locations (Summer 2003) Collected by NCRWQCB & USGS

Total Phosphorus Grab Sample Data @ Various Locations (Summer 2003) Collected by NCRWQCB & USGS

NH3 as N Grab Sample Data @ Various Locations (Summer 2003) Collected by NCRWQCB & USGS

NO2 / NO3 as N Grab Sample Data @ Various Locations (Summer 2003) Collected by NCRWQCB & USGS

TKN Grab Sample Data @ Various Locations (Summer 2003) Collected by NCRWQCB & USGS

BOD Grab Sample Data @ Various Locations (Summer 2003) Collected by NCRWQCB & USGS

TOC Grab Sample Data @ Various Locations (Summer 2003) Collected by NCRWQCB & USGS

Table 11. Measured Sediment Oxygen Demand Rates and Sediment Characteristics at Shasta River Sites.

Sites	Date	Replicate	Water Depth (meters)	Blank-Corrected SOD Rate at 20°C (SOD ₂₀ , g/m ² /d) ²	Sediment Organic Content (%)	Sediment Percent Finer than 63 microns (%)		
Shasta River upstream of Montague-Grenada Road	Aug 12, 2003	1	0.9	2.0	2.3	5.7		
7	80	2	0,8	Contraction of the Contraction o	1.4	3,2		
3	8	3	0.7	1.0	1.7	3.3		
Shasta River downstream of Montague-Grenada Road	Aug 12, 2003	i.	0.7	1.6	4.8	5.0		
		2	0.6	0.5	7.5	54.3		
		3	0.5	1.0	4.1	2.4		
Shasta River near Highway 3 – site A	Aug 13, 2003	1	0.9	1.5	2.6	2.1		
		2	0.9	0.7	1.0	0.8		
3	8	3	0,8	0.1	1.5	1.6		
Shasta River near Highway 3 – site B	Aug 13, 2003	1	0,9	1.3	1.4	3.3		
	5	2	0.9	1.4	1.2	1.3		
		3	0.8	1.7	1.5	2.9		
Shasta River near Highway 3 – site C	Aug 14, 2003	L.	0.7	2.1	0.9	0.7		
		2	0.5		1.2	8.9		
		3	0.4	2.3	0.8	2.3		
Shasta River near Highway 3 – site D	Aug 14, 2003	10	0.6	1.8	6.5	29.9		
		2	0.7		3.4	48.9		
		3	0.7	2.3	6.3	44.4		

Table 5.	Waste	water	Trea	tmen	t Plant	Bracket	ting V	Vater Qu	uality Re	sults fr	om Field M	easure	ment and	Grab	Samp	le Ai	nalysi	s, 200	3	
					Field Para	ameters						Lat	Analysis (mg/L)							_
Location		Time	Tw	рН		DO Sat (%)	Sp Cond	NH3 as N	NO3 as N	NO2 as N	NO2+NO3 as N			TDS	TSS	TKN	BOD	Chl - a	Pheo-a	TO
Weed Wast	te Water	Treatm	ent Fac	·ilitz - 1	6/18/2003	1														
CONTRACTOR TO CONTRACTOR	SOUR CONTROL CONTROL	of Europe services	Decree of the Control		effects a personal con-		407	ND	_	_	0.400	0.000	0.400	450	ND	NID	_			NE
	Above Below		13.56 14.68	8.32 8.27	9.70 10.33	93.3 101.3	167 172	ND ND			0.460 0.360	0.082 0.100	0.160 0.076	150 150	ND ND	ND ND				ND ND
Need Wast					7/22/2003	3								200000						
7	Above	13:35	15.45	8.04	9.79	98.1	174	ND			0.530	0.094	0.120	150	ND	ND	9.2			NE
	Below		16.96	8.02	9.67	100.1	177	ND			0.530	0.110	0.100	180	ND	ND	ND			NE
Need Wast	te Water	Treatm	ent Fac	ility -	10/21/200	3														
	Above		11.54	7.96	10.04	92.3	168	ND			0.560	0.120	0.098	140	12	ND	ND			ND
	Below		11.87	7.98	10.20	94.5	173	ND			0.520	0.100	0.074	140	10	ND	ND			NE
Montague <u>'</u>	Waste W			Facility	y - 6/18/2	2003														
	Above (1)		21.47	8.22	12.39	141.4	541	0.220			0.140	0.220	0.270	340	18	0.78				1.8
	Below (1)		23.14	8.31	10.56	123.4	574	0.052			0.090	0.250	14.000	380	19 ND	1.30				2.2 0.9
	Below (2)		22.23	7.85	11.65	134.3	692	0.260			0.210	0.250	0.260	430	ND	0.90				0.9
Montague '					-	-										0.00				
	Above (2) Below (1)		24.39 23.27	8.37 8.34	11.26 13.68	134.9 161.2	624 590	0.071 0.071	4 /		0.270 0.130	0.240 0.220	0.400 0.220	420 400	16 14	0.82 0.97	2.7 ND			7.9 8.0
ין Yontague '				71/41/00/00/00	1,000,000,000		350	0.071			0.130	0.220	0.220	400	14	0.57	ND			0.0
	Above (2)	melikana emmili	11.53	8.05	8.63	79.4	806	0.094	-	-	0.390	0.092	0.580	500	ND	ND	ND	-		3.0
	Below (1)		11.53	8.19	12.20	93.8	805	0.097			0.340	0.032	0.051	500	ND	ND	ND			2.9
Yreka Wast					THE RESERVE THE PERSON NAMED IN										4(6)					
	Above (2)		16.07	8.01	10.91	110.9	502	ND			0.170	R	ND			ND				
	Above (1)	8:20	14.06	7.83	8.33	81.3	497	ND			0.620	ND	ND	270	ND	ND				0.2
	A t	10:00	14.23	7.88	9.69	94.8	506	0.094			0.720	0.070	0.070	280	ND	ND				0.2
UN -U - U - U - U - U - U - U - U - U -	Below	10:30	14.68	8.26	10.98	108.4	509	ND			0.870	0.150	0.150	280	ND	0.56				0.3
reka Was <u>i</u>	te Water					3														
	Above (2)	14:30		7.59	10.03	109.8	557	N.D.		ND	0.098	ND	ND		N.D.	ND				
	Above (1) At	13:10 15:10	18.50 19.25	7.71 7.80	10.22 9.43	109.1 102.7	520 535	ND 0.200			0.860 1.000	ND 0.150	0.057 0.130	330 340	ND ND	ND ND	ND ND			ND ND
	Below		22.70	8.26	8.67	100.9	542	0.180			1.600	0.170	0.130	360	10	ND	ND			1.2
38														250						
	222			Repor	ting Limits	s (mg/L)		0.050	0.050	0.050	0.050	0.050	0.050	10	10	0.50		0.0005	0.0005	0.80
ocation Note.		tewater '	Treatme	nt Facili	tv "Ahove"	= Boles Cre	ek annrox. 2	200 meters d	lownstream	of bridge to	the Weed Golf Cl	uh.								
						= Boles Cre														
						ove 1" = Ore					950-500 Sc. 55									
											n of Ager Road.									
						low 1" = Ore					n of Southern Pa	ific Railro	ad tressel.							
						2" = Yreka Cı														
	Yreka Was	tewater [*]	Freatme	nt Facili	ty "Above 1	1" = Yreka Cı	reek at High	way 3.												
	Yreka Was	lewater	Freatme	nt Facili	ty "At" = Yr	eka Creek a	t Cutoff Trer	ich.												
	rreka Was	ewater	reatme	nt Facili	ty "Below"	= Yreka Cre	ek at Ander	son Grade R	oad.											
lotes: I	ND = Non-C	etect (na	aramete	r is not n	resent or r	oresent at co	ncentrations	s below the	laboratory r	eportina limi	it.									
					parameter						•									

Table 8. Shasta River Bacteriological Sample Results 2003

Site	Total Coliform (MPN/100 ml)	Fecal Coliform (MPN/100 ml)	E. coli (MPN/100 ml)	Enterococcus (MPN/100 ml)
Montague- Grenada Road	≥ 2,419.2	300	249.5	1091.0
Highway 3	≥ 2,419.2	500	285.1	165.2
CA DHS Threshold Level	10,000	400	235	61

Notes:

MPN = Most Probable Number

The California Department of Health Services (DHS) recommends posting fresh water beaches when single sample values exceed the levels identified in the fourth row of the table. California Department of Health Services. July 24, 2001. Draft Guidance for Fresh Water Beaches.

http://www.dhs.ca.gov/ps/ddwem/beaches/freshwater.htm

Total and fecal coliform, enterococcus, and e. coli are "indicator organisms" of microbiological contamination and are used by health authorities as surrogates for disease-causing organisms that are likely to be present in sewage, but are difficult to analyze for directly. Presence of these indicator organisms at both Shasta River sample locations at levels above the DHS thresholds indicates there may be disease-causing organisms present in the Shasta River.

Purpose of Meeting

- To update the TAG on the status of Shasta River TMDL development activities.
- To summarize 2002 & 2003 water quality monitoring activities and results.
- To discuss data analysis approach.
- To discuss 2004 water quality monitoring plans.
- To answer questions and receive feedback.

Data Analysis Tasks and TMDL Development Schedule

- > Data compilation and summaries (Complete)
- Development of conceptual model framework (Complete)
- Statistical analysis of data (Spring-Summer 2004)
- Draft Problem Statement (June 2004)
- Development of water quality model (Winter -Summer 2004)
- Model calibration (June July 2004)
- Water quality monitoring and assessment (July October 2004)
- Model scenario runs and allocation of loads (August – September 2004)
- Draft TMDL report (December 2004)

Water Quality Database

- All available water quality data (1952 to present) has been compiled – grouped by monitoring location
- Summary statistics of data

Conceptual Model Framework – Temperature

- Water temperatures vary spatially and temporally
- > Factors affecting temperature:
 - Meteorologic conditions
 - Flows
 - Shading
 - Channel substrate and riparian soil conditions
 - Surface and subsurface water interactions

Conceptual Model Framework – Dissolved Oxygen

- Dissolved oxygen concentrations vary spatially and temporally & are strongly correlated with temperature.
- Important features, processes, and events affecting DO concentrations:
 - DO concentrations vary with stream flow.
 - DO concentrations exhibit wide diurnal fluctuations driven by photosynthesis and respiration of aquatic plants.
 - Aquatic plant growth is controlled by (1) availability of nutrients in the water column and substrate, (2) light availability, and (3) channel substrate conditions.
 - Sediment oxygen demand varies spatially and exerts a steady consumption of DO.
 - Biological oxygen demand varies spatially and exerts minimal consumption of DO.

Important features, processes, and events affecting DO concentrations, continued:

- DO concentrations in Lake Shastina vary with depth, reaching near-zero at the lake bottom during summer
- Lake Shastina changes the form and concentrations of nutrients and constituents that exert an oxygen demand.
- Impoundments have a localized effect on DO concentrations.

Water Quality Model Development

- Contract with Watercourse Engineering, Inc. (WEI) and UC Davis
- Modifying Tennessee Valley Authority (TVA) River Modeling System (RMS) model of Shasta River water temperature (RQUAL) and flow (ADYN) developed by WEI for Shasta Valley RCD.
 - Updating to RMS Version 4.0 improvements to riparian vegetation & shading logic
 - Extending RQUAL to include dissolved oxygen
 - Geographic extent: Shasta River mouth to Dwinnell Dam

Water Quality Model Development, cont.

- In RQUAL DO concentrations are controlled by photosynthesis and respiration of aquatic plants, SOD, BOD, and NBOD.
- The model does not "grow" plants, but exhibits DO production (photosynthesis) and consumption (respiration) given a set standing crop.
- Model will be run for 2-week periods May through September.
- A separate "box model" will be run to evaluate aquatic plant response to nutrients. This nutrient/ aquatic plant response model can "grow" plants given input parameters of growth rate, respiration rate, mortality, nutrient concentration, light availability, and substrate conditions

Water Quality Model Development, cont.

- ➤ The temperature component of the RMA model has been calibrated to 2002 data.
- Dissolved oxygen component will be calibrated to 2002 & 2003 data.
- Analytical approach for Lake Shastina is still being evaluated.

2004 Water Quality Monitoring

- Model calibration exercise will help identify data gaps.
- > 2004 monitoring plans:
 - Riparian vegetation surveys
 - Aquatic plant surveys
 - Channel substrate conditions surveys
 - Shasta River nutrient grab samples
 - Irrigation return flow grab samples
 - Irrigation return flow temperature monitoring

Next TAG Meeting

August to review preliminary model results and discuss model scenario runs.

Contact Us

CA North Coast TMDL Development Lead: David Leland (707) 576-2069; lelad@rb1.swrcb.ca.gov

Shasta River TMDLs Staff Lead: Matt St. John (707) 570-3762; stjom@rb1.swrcb.ca.gov

TMDL Implementation Plans: Dave Hope (707) 576-2830; hoped@rb1.swrcb.ca.gov

For Further Information, and to Download TMDL Documents:

http://www.swrcb.ca.gov/~rwqcb1/programs/tmdl/shasta/shasta.html

Measured continuous data of dissolved oxygen with initial edited record, computed record, and saturated values for 2002 and 2003 for the USGS site on the Shasta River at Yreka. The Regional Water Board refers to this station as "Shasta River Near Mouth at USGS Gage".

Measured continuous data of dissolved oxygen with initial edited record, computed record, and saturated values for 2003 for the USGS site on the Shasta River at Hwy 3. The Regional Water Board refers to this station as "Shasta River at Highway 3".

Measured continuous data of dissolved oxygen with initial edited record, computed record, and saturated values for 2002 and 2003 for the USGS site on the Shasta River at Montague. The Regional Water Board refers to this station as "Shasta River at Montague-Grenada Road".

Measured continuous data of dissolved oxygen with initial edited record, computed record, and saturated values for 2002 and 2003 for the USGS site on the Shasta River at Edgewood. The Regional Water Board refers to this station as "Shasta River at Edgewood Road". Filled triangles identify dates of site inspections by USGS